ker-chunk
Many of us have boiled an egg at some point or another in our lives. The conventional technique is relatively straightforward—get the water boiling, drop the egg in, and leave it for a certain period of time based on the desired consistency. If you want the yolk soft, only leave it in for a few minutes, and if you want it hard, go longer.
Ultimately, though, this is a relatively crude system for controlling the consistency of the final product. If you instead study the makeup of the egg, and understand how it works, you can elicit far greater control over the texture and behavior of your egg with great culinary benefits.
It all comes down to the physical basics of what goes on when we cook an egg. Whether frying, poaching, or simply boiling, one thing is the same—the liquid contents of the egg turn more solid with heat. This is because the heat causes the proteins in the egg white and egg yolk to denature—they untangle and unravel from their original folded structure into a new form which is the one we prefer to eat.
Physical chemist Hervé This is widely credited as revolutionizing the way we think about cooking eggs, through his careful study of how temperature affected the cooking process of a “boiled” egg. He invented the idea of the “6X °C egg”—a method of cooking eggs to generate a pleasant, smooth consistency by carefully controlling how the proteins denature. His work has since been expanded upon by many other researchers eager to untangle the mysteries of how egg proteins behave with heat.
Different purveyors of these theories each have their own ideals—but it’s common to hear talk of the “64-degree egg” or “65-degree egg.” To create such an egg, one typically uses a sous vide water bath set at a very precise temperature, in order to cook the egg in as controlled a manner as possible. The process is a relationship between time and temperature, and so the cooking times used are a lot longer than with boiling water at 100 C—immersing the eggs for 60 minutes or more is typical. This also helps to ensure the eggs are safe to eat, with the lower temperature needing a longer time to quash potentially harmful bacteria.
Enthusiasts share cooking times and temperatures along with qualitative results, ever searching for the ideal egg.
The results of such a process? Eggs cooked in this manner are prized for their tender yolks and an overall consistency not dissimilar to custard. The process denatures the yolk and white proteins just enough to create an incredibly smooth egg with luxurious mouthfeel, and they’re often cited as melting in the mouth.
The only real drawback? It’s typical to get some runny whites left over, since the low cooking temperature isn’t enough to fully denature the proteins in that part of the egg. These eggs were once a neat science experiment from the world of molecular gastronomy, with the cooking method since becoming widespread with restaurants and sous vide enthusiasts around the world.
There are even more advanced techniques for those committed to egg perfection. A research team from the University of Naples, Italy, determined that cycling an egg between two pans—one with boiling water, the other at 30 C—allowed both the yolk and the white to each reach target doneness. To get the whites to around 85 C while holding the yolk at 65 C, the team used the technique of swapping between pans to get both to their ideal temperature by modelling heat transfer through the egg. This controls the amount of heat transferred to the yolk deeper inside the egg, ensuring that it’s not overcooked in the effort to get the whites to set. Ultimately, though, this process requires a great deal of work swapping the egg back and forth for a full 30 minutes.
Few make that sort of commitment to eggcellence.
Featured image, the imaginatively named “Selective Photography of Breakfast in Plate” by [Krisztina Papp].
This week @adafruit Pedro published his 3D printed snap fit case for the Adafruit USB-C fixer. Noe shared his new enclosure design for the MagTag 2025 edition. Also quick look at Fruit Jam. The code for the MIDI keyset controller is finalized and ready for a demo! Time lapse this week features a fidget of Ferroseed designed by Bruddz.
USB-C Fixer
https://www.adafruit.com/product/6323
Fruit Jam
https://www.adafruit.com/product/6200
MagTag 2025 Edition
https://www.adafruit.com/product/4800
KB2040:
https://www.adafruit.com/product/5302
CircuitPython Day 2025
https://blog.adafruit.com/2025/07/28/circuitpython-day-is-august-15-2025/
Timelapse Tuesday
Fidget Ferroseed By Bruddz
https://makerworld.com/en/models/1591665-fidget-ferroseed
https://youtu.be/Sl2iq8B7I1g
Community Makes
https://www.printables.com/model/7152-3d-printed-unicorn-horn/comments
https://www.printables.com/make/2766198?comment_id=2766198
If you were at OpenSauce, you may have seen new Youtuber [Sahko] waltzing about with a retrofuturistic peice of jewelery that revealed itself as a very cool watch. If you weren’t, he’s his very first video on YouTube detailing the design and construction of this piece. We’ve embedded it below, and it’s worth a watch. (Pun intended, as always.)
The build was inspired by the delightful amber LED dot-matrix display modules that circle the band of the watch. They go by HCMS2901, but [Sahko] recommends using the HCMS3901 as it’s both more 3.3V-tolerant and easier to find now. A challenge in mounting so many displays was the voltage on the supply rail dropping below the logic level; presumably the newer version does not have this problem to the same degree. Either way we love the look of these little displays and are pondering projects of our own that might include them.
He’s got quite a few wrapped around his wrist, so at full brightness, all these displays draw one amp. That explains why like the LED watches of the 1970s, the default state of the displays is “OFF”. Even with a LiPo pouch salvaged from a disposable vape, the runtime would only be half an hour at full brightness without that periodicity. Luckily [Sahko] included buttons on the band of the watch to activate it and control the brightness so it isn’t always blasting at full. There are also different modes available, including a really cool waterfall effect you can see in the video.
The band is an interesting choice, too: it’s just a flex PCB. There’s nothing backing it, aside from its own stiffeners, which makes us very curious how well this watch would hold up to daily use. There’s no clasp in the traditional sense, either: the band is closed by a 4-pin connector that doubles as both charge and the USB programmer for the stm32u08 microcontroller that runs the displays. Conveniently for a watch, this version of the stm32 has an RTC, so it keeps time as well. We dig the minimalism of this design; it’s a great contrast to the maximalism of wrapping your wrist in displays.
We’ve seen very similar displays on an edge-viewed watch, but a tiny amber LED matrix never gets old. If you wrapping your wrist in all those tiny LEDs is too impractically power-hungry, try using Nixie tubes.
We’re always watching for projects– wrist mounted clocks or otherwise– so if you’ve got the time, please drop us a tip.